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Abstract The advantages of virtual machine (VM) execution (dynamically loaded, portable objec
with high-level information) also permit changing the semantics of executables.Load-time adaptation
(LTA) intercepts the VM’s file operations and modifies object code on the fly, without changing the
implementation, without needing access to source code, and without changing the actual files. We in
a new technique,library-based LTA, and show how it can extend languages in such ways as adding con
or mixins to existing classes, providing default code for interfaces, and instantiating parameterized
We discuss an implementation of library-based LTA and its application to extending Java semantics

“Adopt, adapt, improve.”— Motto of King Arthur’s Round Table

1. Introduction

Programming language researchers are frequently faced with problems that could most conveni
solved with a small change to the semantics of the language they are using. For example, for Ja
changes could include the ability to provide default code for methods in interfaces, mixin cl
assertions, parameterized types, and various kinds of code instrumentation for profiling or deb
Traditional solutions to these tasks have included source-code preprocessors, design patterns
conventions, compiler modifications, and binary code editing. The increasingly widespread u
languages that execute onvirtual machines (VMs) affords the opportunity to extend the semantics o
language implementation in an efficient and non-intrusive way.

A virtual machine provides a common focus of data and control flow. Instead of compiling all sourc
for each program into binaries for all platforms, it suffices to compile only the VM itself. This strateg
been used by many popular programming systems for languages from BASIC and Pascal [N+81] 
Smalltalk [GR83], ML [L90], Oberon [FK97], Eiffel [SE97], and Java [LY97]. By the same token,
centrality of the VM means that changes at this point can adapt the runtime behavior of the entire lan

We describeload-time adaptation (LTA), a code-transformation technique that allows a wide range
changes to programs and languages running on a VM without sacrificing the benefits of portabilit
comprises a distinctive way of accessing executables: it takes advantage of the common data an
path provided by the VM and intercepts binary files as they are requested by the runtime syste
characteristic benefits provided by VM execution, including binary portability, retention of high-



 with
erate
e are no
ance

is
s or
ompare
-level

 to all

ystem,
 provides

 and the
cross a
ure and
roteus to
classes
rfaces,
ware or

.

s and to

 our
f LTA
ction 3
arious
ction 5
 with

ntation
uested
 system

mmon to
ent: the
program information, and dynamic loading of modules, enable LTA to perform its task efficiently and
little disruption of VM behavior. LTA does not require source files for the modified code, so it can op
on system or third-party classes. It also makes no changes to existing class files on disk, so ther
modifications to “back out” of. LTA can defer its work until class loading time, so it affects perform
only when active. Finally, it is easy to activate and deactivate the application of changes.

This paper introduces the concept oflibrary-based LTA, in which code that modifies program binaries 
dynamically linked with the VM. Library-based LTA does not modify the virtual machine’s semantic
its implementation, so it does not require upgrading or patching when new VMs are released. We c
this technique to other ways of performing LTA, such as modifying the VM directly, using language
facilities such as custom class loaders (e.g., subclassingjava.lang.ClassLoader in Java), or interceding with
the underlying operating system’s services. We will describe the intrinsic properties of LTA, common
implementations, and then compare the properties of different implementation strategies.

We have implemented library-based load-time adaptation for the Java virtual machine (JVM). Our s
called Proteus, lets us change the form of Java class files as they are being loaded. A programmer
a separate description of the changes to a Java class, and Proteus intercedes between the JVM
operating system, making corresponding modifications to the class file as it is read from disk or a
network, leaving the original unaltered. The Proteus system embodies a flexible runtime architect
an extensible front-end, so users can implement custom language extensions. We have used P
implement systems for binary component adaptation [KH97] and for adding contracts to Java 
[DH98]. In addition, we also show how Proteus could add default implementations to Java inte
instrument existing code, instantiate parameterized types, and help to work around known hard
software bugs.

The contributions of this paper are:

• We introduce the technique of library-based load-time adaptation.

• We characterize the range of load-time techniques and describe where library-based LTA fits in

• We compare the different approaches and explain the advantages of our technique.

• We describe our implementation and show how it can be used to investigate language extension
address problems of software engineering and development.

In the following sections we discuss the general implementation and applicability of LTA and
experiences with the Proteus implementation. Section 2 discusses common properties o
implementation, and describes the differences between several existing implementations. Se
describes our implementation of library-based LTA. Section 4 explains how LTA can accomplish v
language extensions, giving details where we have implemented the extension in Proteus. Se
describes some prerequisites for applying LTA effectively, and some limitations of LTA. We conclude
a review of related work and conclusions.

2. Load-Time Adaptation

The aim of load-time adaptation (LTA) is to augment a language’s semantics or runtime impleme
without changing existing tools. To achieve this goal, LTA modifies binary code after it has been req
by a runtime system, but before that system has a chance to use it. Figure 1 shows how a single LTA
can function for more than one runtime system, because it intercedes at a control and data point co
both: the loading of classes. LTA serves as a transparent filter between the VM and its environm
2
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virtual machine cannot tell that it is not interacting directly with the file system, and the underlying O
behave as if it is supplying files directly to the requesting process.

There are numerous ways to implement LTA, each with its advantages and disadvantages; we will
various alternatives shortly. However, all strategies share several valuable properties that make 
attractive option for the kind of language changes we discuss in this paper.

Because LTA intercepts classes at load time, the original class files, whether on disk, network, 
dynamically generated, remain unchanged. This property helps ensure that a project can be p
runtime systems that do not implement LTA. (Unless LTA adds features essential to the application
also prevents the profusion of alternative versions of compiled binaries. In addition, LTA simplifies c
management: the VM can be assured of having the most up-to-date version of each class file, 
having to choose between different modified versions.

In contrast with preprocessor schemes which transform source-level text, load-time interception o
only on class files. This means that existing source code does not need to be recompiled, and th
need to manage parallel hierarchies of changed and unchanged source text. In addition, LTA can
system classes or code from libraries for which the source text is not available.

Many VMs implement some form of late or “lazy” loading of classes. In these circumstances, clas
loaded only when necessary. Because LTA defers its processing until a class is actually loa
automatically gains the efficiency benefits of late loading—it performs no unnecessary work—w
having to address itself directly to the issue of loading policies.

In the following section we will discuss some of the alternatives that have been used in previous p
and compare their merits.

2.1 Strategies for Load-Time Adaptation

The distinguishing characteristic of LTA is the point in the data path at which it intervenes. An LTA e
functions as a filter between the VM and the operating system libraries. Possible ways of intervening
juncture include modifying the VM’s file-opening calls directly or (for Java) writing a class loader in
itself, or intercepting the file system operations. Each approach has its advantages and shortcomin

Modifying the VM. An obvious way to provide load-time filtering is to integrate it into a VM. It 
conceptually simple to modify the VM’s file-handling code directly, as shown in Figure 2, adding a 
that modifies class files as they are read from disk or across a network. (If a VM provided a mechan

filemodified

Figure 1. Intercepting a file request with LTA.

LTA OSVM1
change

file
(e.g. interpreter)

VM2
(e.g. JIT)

request for class file request for files
3
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user code to execute at this stage, portable LTA would be considerably easier to implement.) This a
has been used by several groups to augment the Java semantics [KH97, AFM97, MBL97]. Having
to a VM lets a programmer make changes in one place that would otherwise have to be applie
existing and future code or all compilers for the source language. However, changing the VM
presents problems: source code for the VM may be undocumented, incomprehensible, or 
unobtainable. Modifying just one VM does not affect the behavior of other runtime systems,
introducing incompatibilities. But changing all VM implementations is not a realistic goal, and ev
single VM may evolve in such a way as to require continuing efforts to keep pace.

• Custom class loaders.The JDK 1.2 specification includes an extension mechanism that allows us
define their own class loaders [LB98]. Class loaders are a consistent and portable scheme for m
classes during loading [CCK98, WS98]. Figure 3 shows how a user-defined class loader fits into t
path of the JVM. Its implementation involves writing only Java code, hence it is as portable as the la
itself. However, custom class loaders have several shortcomings for the task at hand. First, they c
load user-defined classes; all system classes (e.g. java.lang.*) are loaded directly by the JVM, so this ap
proach could not modify such classes. Second, applications may use their own class loaders, bypa
LTA loader that changes the classes. Finally, user-defined class loaders influence the semantics of
cessibility. In an application with two class loaders, both of which delegate to the LTA class loader
namespaces that were formerly separate will merge, with unpredictable results. This problem is not i

Figure 2. Modifying a VM to implement LTA.

Loader Linker Init etc.

LTA Runtime Modify VM’s data path here

Virtual Machine

class
file

Figure 3. Performing LTA with a custom class loader.

System Loader

etc.

Virtual Machine

Custom Loader

System classes

User-defined
classes

class  LTALoader
extends  java.lang.ClassLoader

{ ... LTA code ... }

delegation
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able, but does highlight the fact that we are not concerned with class loadingper se, but with having access
to the loaded class before any subsequent processing. In the absence of such a built-in hook, we tur
to the interface between the VM and the OS.

• Intercepting system calls.The interaction between a VM and the file system is a convenient inter
tion point at which to divert and modify the byte codes being loaded. All operating systems provide
terface through which user processes can request services; such requests are calledsystem calls. Figure 4
shows how LTA would be implemented by intercepting system calls. One way to do this is by using
/proc file system available on some versions of the Unix operating system [FG91, AISS98]. Entries 
/proc directory are virtual files that represent the address spaces of running processes, and by man
these files a programmer can control the corresponding processes. To use this approach, the VM 
child process. The parent process uses theioctl() call to intercept input and output to the child’s virtual fil
which are equivalent to system calls by the process.

This approach can implement LTA without changing the actual VM executable itself, and it is possib
the same code could work for several different VM implementations. However, the approach i
dependent and thus hard to port to systems without /proc file system functionality. Furthermore, th
process runs in a different address space than the parent and has a different space of file descripto
making it cumbersome to pass data between the interceptor and the VM.

• Intercepting library calls. Instead of using OS-specific ways to intercept file system operations di
ly, the same effect can be achieved by interposing a custom dynamically-linked library between the V
the standard libraries it calls. On virtually all operating systems, programs use dynamically-linked lib
(DLLs) to insulate themselves from details of the operating system and hardware they are running o
dynamically-linked libraries provide the code for familiar file-handling functions likeopen(), close(), read(),

Figure 4. Implementing LTA by intercepting system calls.

Standard OSVM

fopen() open()

Library

LTA RuntimeIntercept system call here

Process context

Figure 5. Implementing LTA with dynamic linking.

Standard OSVM

fopen()

Library
LTA

Library

_open() open()
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and so on. These libraries form an intermediate level of services between the user-level process and
level details that are specific to the operating system.

By directly modifying existing libraries or by inserting custom variations into a library search path, a 
based LTA implementation can intervene during the class loading process (Figure 5). This solutio
not depend on OS features that are not uniformly available, while still allowing the application of ch
to all incoming files. Because of this portability advantage, our implementation of LTA takes this app
the next sections discuss library-based LTA in more detail.

2.2 Load-Time Adaptation with Dynamic Linking

Interceding between the VM and the OS at the level of library calls presents a middle path betwee
intervention in the VM and source-level custom class loaders. The trade-offs between thes
approaches are complementary: altering the VM provides almost arbitrary control to the user
expense of portability; custom class loaders are as portable as the language itself, but may
applicable to privileged system classes. Intercepting calls to dynamic libraries maintains for both t
and the operating system library the illusion that they are conversing directly, and isolates the ada
engine from the need to know about the origin of the byte codes it is modifying.

The most visible benefit of implementing LTA using a custom library is the decoupling of LTA fro
specific VM. This is advantageous for several reasons. First, the developer is freed from the n
privileged access to the VM source code; this would be a considerable restriction in most cases. 
subsequent changes to a particular VM will probably not necessitate any changes to the LTA cod
classes are still loaded using the same system calls. Third, a DLL implementation of LTA will fun
across different VMs that use the same library interface to the underlying file system, allowing
developers to avoid engaging in a race to keep up with a growing variety of virtual machines. For ex
the same binary of our SPARC implementation of LTA for Java supports all current Solaris JVMs, f
JDK 1.1 interpreter to the newest JDK 1.2 JIT.

An additional benefit of library-based LTA is the ease with which changes can be activated and deac
An LTA runtime library can be inserted into the search path of a VM (or other application) by a s
renaming, by modifying a dynamic search path, or by executing a simple shell script. Reversal
interception is equally easy. When a VM does not use the LTA library, it suffers no performance pen

For Java, library-based LTA avoids several difficulties that arise with user-defined class loaders
dynamically-linked LTA engine, all classes are on an equal footing, and can be modified; the JVM
special loader for system classes, which are inaccessible to a custom loader. In addition, Java u
define their own class loaders, indadvertently bypassing the LTA engine. If two user-defined loade
delegate to the LTA loader, the namespaces of their loaded classes will merge, which may cha
semantics of an ensemble of classes.

Using dynamically-linked libraries also addresses the issue of coordinating development of new co
relies on modifications to old code. For example, suppose a programmer uses LTA to add a methodm() to a
system classC. If this change is applied only at runtime, and not at compile time, no-one will be ab
call it—a compiler will reject any calls toC.m() in newly-written code, claiming there is no such metho
Using library-based LTA, any compiler or other programming tool that requests a class file
automatically get the changed version, without any further intervention on the part of the client.

This approach to load-time adaptation can also apply to executables coming from remote locations,
web pages or application servers. In such cases, a VM will be making calls to an operating s
network libraries; an LTA runtime engine can intercept these calls as it can calls to file libraries.
6
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In summary, dynamic linking is popular precisely because it allows the flexible replacement of librar
without any attention needed from the application developer. This same flexibility is enjoyed by a
engine that stands at the crossroads between an application and its libraries, and thus the LTA lib
transparently perform its tasks for every virtual machine that links with it instead of with the sta
library. Because of the advantages offered by a library-based LTA system, we have used this app
implement load-time adaptation. The following section describes our implementation in detail.

3. Implementing Load-Time Adaptation for Java

Our implementation of LTA, called Proteus, supplies a modified version of the dynamically-li
standard C library. We add a wrapper to the functions that open a file or return information about
example, when the library is called to open a class file, it does its own processing, in the midst of w
calls the C library file functions itself. Proteus provides a small set of elementary transformations th
be applied to a class file; in combination these changes can have wide-ranging effects. We dis
Proteus runtime engine, which is the core of the LTA implementation, and the front end that allows u
specify the changes to be applied to classes.

3.1 The Runtime Engine

Figure 6 shows some of the control and data flow for modifying a class. In the figure, the VM (sho
left) calls theopen() library routine to start loading a class. Proteus’s version ofopen() reads the class file,
and adelta file, by calling the C library’s originalopen() function. Proteus parses the class file into 
internal representation, applies the changes specified in the delta file, translates the result back i
file format, and writes the modified class file to a user-specifiable cache location on disk. Finally, P
passes the new path to the C library’s file-opening routine and returns the resulting file descriptor.

When the Proteus runtime engine detects a request to open a class file, it first looks in its cache dir
see if the class has already been modified and stored. If so, Proteus just redirects the system c
cached version and passes the call to the C library. If not, Proteus looks for a delta file first in th
directory as the class file, then in the cache directory. Looking in the cache directory facilitates spe
changes to classes (e.g. system classes) whose directories are not writable by the Proteus user. If the

VM

delta

class

C Library

Proteus
Library

modified

open()

old open()

Figure 6. Data and control flow in the Proteus runtime engine

class
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delta file for the class, Proteus applies the changes to the class file, caches it and redirects the syst
the new file. If there is no delta file, Proteus has no effect, just passing the call unchanged to the C
When Proteus locates a cached version of the class file, it also checks to see that the class file is u
with respect to its contract file and the original class file. If the class file is out of date, the library rea
the delta file to the class and caches the result as described above.

The standard C library implements many file-related routines. For example, the Solaris 2.6 librarylibc.so.1
contains functionsopen(), _open(), and several others. To make the Proteus runtime engine work wit
VMs on a given platform, we modify each file routine to check for class files. In addition toopen() and
variants, we also instrument thestat() call which returns information about the file, in particular its size. 
changed functions follow the process described above, looking for the delta file and modifying th
file if appropriate.

The procedure for creating the Proteus runtime engine is similar for most platforms: edit an existing
and compile replacement code. The two resultant modules may remain separate or be linked toge
example, to create a version for a Unix platform, we first make a working duplicate of the dynam
linked C librarylibc.so.1. We then edit this binary file directly, renaming the functions we want to interc
e.g. open() becomesOPEN(). We create a new source file redefiningopen() to carry out the process o
adding contracts to classes, itself calling the renamed C library version as necessary. Prote
incorporates part of the BCA runtime library [KH97, KH98] to perform class file modifications. Fin
we compile and link this code with the existing C library, resulting in the Proteus runtime engine
Proteus engine consists of about 8,000 lines of C++ code in 25 classes.

Because the Proteus runtime engine is dynamically-linked, it suffices to arrange that the off-the-she
finds and uses it in place of the standard C library. Usually, a simple shell script setting the library
before starting the JVM is all that is needed to enable LTA for a new JVM.

Our current implementation for Solaris 2.6 supports all Solaris JVMs (e.g. the JDK 1.1.x interpreters, the
JDK 1.2 interpreter, and the Solaris 1.2 JIT); these JVMs differ slightly in the way they open class fi
are all supported by the same library. We are currently porting our code to the Win32 platform a
popular JVMs.

3.2 The Front-End

The purpose of the front-end is to generate the delta file, which specifies the changes made to a cla
the runtime engine. The delta file describes these changes in a binary form suited for efficient r
application; the front-end is a compiler that lets the user specify the changes in human-readable fo
compiler is written in Java using a parser-generator and comprises about 100 classes.

The syntax of specification and delta files is borrowed from the Keller-Hölzle implementation of b
component adaptation [KH98]. As an example, the specification for adding some guard code to 
implementation might look like this:

adapt class Stack {
rename method void push(int i) to push$old;
add method public void  push(int  i) {

if  (is_full()) throw new  RuntimeException("Stack is full in Stack.push().");
push$old(i); // Call original version.

};
}

8
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A user can specify renaming class or instance members or references to them, or adding memb
carrying out these changes to specific classes or interfaces, or all implementors of an interface. In 
the specification language provides the elementary building blocks of class modification. Because 
is currently concerned with adapting the interface (in the general sense) of a class, it does not pro
direct byte code manipulation, but this is a possibility for the future.

In addition, Proteus supports the addition to the compiler of other syntaxes, to allow users to d
custom specification languages for specific purposes. For example, a Proteus user might prefer to 
the modification to the Stack class above in this form:

guard Stack.push(int i) with { !full() else "Stack is full in Stack.push()." }

To this end, Proteus provides an API for integrating a custom parser into the existing delta file comp
addition, the internal syntax trees used by the compiler are equipped with methods that will prin
reverse-compilation into the standard textual specification format, so it may conveniently be inspec
as if it had been generated directly. The Proteus compiler also supplies an interface for applying the
design pattern [GOF95] so a client can easily manipulate the tree before it is converted to the delta

In the interest of simplicity, Proteus currently requires one delta file per class. However Java supp
combination of many class files into a singlejar file. It would not be difficult to extend Proteus in a simila
way, for example by allowing one compound delta file per jar file.

4. Applications of Load-Time Adaptation

An LTA system can perform many useful language extensions. Among these are modifying cla
adjust the fit between libraries and clients; adding language features such as assertions,
implementations for interfaces, or parameterized types; instrumenting code for measurement and a
and applying patches or workarounds for known bugs. We have constructed several of these too
Proteus. In the following sections we describe the motivation for such modifications, discuss how
simplifies their implementation, and describe in more detail those systems we have implemented.

4.1 Binary Component Adaptation

Binary component adaptation (BCA) [KH97] was conceived as a remedy for the problems posed
separate development of code modules [H93]. Although object-oriented (OO) programming para
have taken some steps toward the easier reuse and evolution of software components, it is still e
client to be stymied by a small incompatibility between classes. Examples of such problems i
differences in parameter order, mismatch of class member names, and classes that implement inter
don’t declare that they do.

Clients will not usually have access to the source text of the incompatible code. Furthermore, m
changes to one offending class or library will not help when another similarly problematic body of c
dynamically loaded. In such cases what the client wants is a way to change how a category of
appears to another class or to the runtime system, rather than the ability to make arbitrary chang
code.

The original Keller-Hölzle BCA implementation directly modifies the JDK 1.1.5 Java VM to apply
desired changes to a class file, and applies BCA to thejavac compiler itself to ensure that new classes a
compiled against modified old classes. This restricts the client to use a particular Java implementa
9
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re-implementing BCA using the Proteus LTA mechanism, we have eliminated the dependency
particular implementation of the JVM or Java compiler.

4.2 Contracts

Contracts [M88] form an extension of the type constraints already imposed by a class’s interf
contract specifies conditions that must apply on entry or exit to a method (pre- or postconditions),
must hold generally (class invariants). Various researchers have suggested ways of adding contrac
to existing languages that lack them [Kr98, KHB98, MP98, PSS98, C98]. We have used the P
framework to implement Handshake [DH98], a system for adding contracts to Java classes.

The Handshake system comprises a contract compiler and the runtime library. Figure 7 shows h
original class file and the assertions are merged at runtime. To add a contract to a class with Hand
programmer creates acontract file which is associated with a single class. For example, a contract 
Stack class could, in part, look like this:

contract  Stack {
invariant  size() >= 0 else  "size is negative";
public void  push(int  i)

pre  !is_full() else  "stack is full" ;
post  top() == i; // Error message is optional.

}

The Handshake front-end uses the API provided by Proteus to translate this into a delta file repre
changes. The Proteus runtime will modify the Stack class as shown in Figure 8.

To evaluate the overhead imposed by contracts, we added empty contracts to 107 classes ofjavac, the Java
compiler provided in the JDK. We measured the performance using JDK 1.2beta4, on a Sun Ultra
167MHz workstation running the Solaris 2.6 operating system.

The unmodified compiler took 3.13 seconds to compile a “Hello World” program. The added time re
to divert compiler’s file-handling system calls through the Handshake runtime library was less than
second. Processing the classes— finding the contract file, ascertain that there is no cached class,
parse the class into memory, perform the modifications (in this case none), un-parse and write the fi

Figure 7. Adding a contract to a class with Handshake.

contract source

Handshake Compiler

contract binary

original class file

Handshake Library

class + contract

Standard JVM
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cache—took an additional three-quarters of a second. (So even in this worst case the performance
for total running time is only about 1/100th of a second per instrumented class.) Subsequent co
when the processed class files were cached, took only 3.5 seconds, again less than half a seco
than without using Handshake.

4.3 Interface Mixins

The Java language provides aninterface construct, that lets a programmer specify a subtyping relation
without committing to an implementation. A programmer wanting to extend a pre-existing interfac
face a problem: pre-existing implementors of the interface may no longer link successfully because 
not implement the newly-added methods. Load-time adaptation can solve this problem by ensuring
implementors of the interface are supplied with the appropriate methods. This has the effect of pr
with an interface some default implementation, and of bridging the gap between Java-style 
inheritance and multiple inheritance in the style of C++ or Eiffel.

The provision of default methods for interface types is a special case of the concept of amixin [BC90,
B92]. In general, a mixin represents the difference between a class and a subclass, abstracte
connection to any specific class. A mixin can easily be expressed and implemented using LTA. C
the case of a graphical object, for example, an interface like this:

interface  GraphicalObject {
DrawingEnvironment env();
void  draw();
// etc...

}

Suppose want to add to such an object the concept of a bounding rectangle, outside of which no im
appear when the object is drawn. A mixin specification for this behavior could look as follows:

mixin  BoundRect mixes with  GraphicalObject {
int  left, top, right, bottom;
void  setRect(int  l, int  t, int  r, int  b) { ... }

push(i) {
check invariant
check pre

  push$old(i)
check post
check invariant

}

push$old(i) {
pre-existing code

}
Stack client

Modified Stack class

Figure 8. Renaming and wrapping thepush()  method.
11
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scratch
void  draw() { env().setClipRect(left, top, right, bottom); super .draw(); }
}

Although the mixin specification appears to describe a new inheritance relation, it will be implemen
a code-copying process. LTA will modify only those classes that directly implementGraphicalObject; and
any further derived classes will remain unchanged. However, dynamic dispatch of method calls e
that the modifieddraw() method will be in place for all subclasses of the top-level implementor. (Of cou
if subclasses choose to overridedraw() completely, not calling their parent’s version, they will not rece
the benefit of the mixin.)

It would be possible to provide similar mixin functionality without using LTA. For example, a user c
modify the Java compiler to automatically insert this code whenever compiling a class that imple
GraphicalObject. However, this constrains the user to Java compilers for which the source is available
can accomplish the same task in a less intrusive way. In addition, LTA provides additional functio
since it enables dynamic mixins, i.e., allows run-time (load-time) mixin application. Therefore, mixin
apply to pre-existing classes or even to future classes (such as new classes that im
GraphicalObject). That is, dynamic mixins apply to an open set of classes, and the mixin writer do
need to know the complete set of classes to which the mixin should be applied.1

4.4 Parameterized Types

In the previous section we described a form of parameterized inheritance, in which code is added to
that satisfy some constraint, such as implementing a given interface. In that case, we think of the m
a distinct entity, and the parameter is the class with which it is mixed. In a similar manner, ageneric type is
a partially-defined type, that needs a parameter (which is another type) to complete the definition.
construction allows a programmer to specify an algorithm or data structure in a way independen
objects contained or manipulated. Support for parameterized types takes such forms as Eiffel g
[M91], ML polymorphic data types and functions [Wi87], and C++ templates [PSLM96]. Java doe
directly support parameterized types; various researchers have proposed mechanisms for extendin
allow some form of genericity [MBL97, OW97, AFM97, BOSW98, CS98].

Several of these approaches require customizing the class loading process to instantiate the gen
For example, in the system of Agesen, Freund, and Mitchell [AFM97], a custom Java compiler tra
parameterized classes into conventional Java byte codes with additional annotations. When com
parameterized classStack<T> the resulting generic class file uses a recognizable placeholder name, s
$1, for all references to the formal type parameterT. When compiling code that declares a stack instan
like Stack<Window> the compiler rewrites the type name in a distinctive way, such asStack$Window.

When the runtime system encounters a reference toStack$Window, it must recognize the class name 
representing a generic class that needs further processing. The authors’ system uses a custom cl
[LB98] to recognize the names, extract the names of the parameters, and substitute these into the
byte codes to create the specific class. However, the authors found that they were unable to ma
custom class loader the default loader—and so be able to filter system classes as well as user c
without making changes to the VM itself.

Load-time adaptation can apply the requisite changes in precisely the same way, but without the t
of either altering the VM or giving up the ability to modify system classes. The original class files, 
with the added annotations, contain all the information necessary to instantiate the generic type to a

1 This is in contrast to the more conventional static view of mixins as building blocks for constructing new classes from .
We view dynamic mixins not as a replacement to static mixins, but as a complement.
12
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specific one. Since an LTA engine has access to all incoming class files, it can assure that all ne
processing takes place before the VM ever sees a byte code.

4.5 Code Instrumentation

Most programming language systems and platforms provide some support for measuring and analy
performance of programs. Often this takes the form of compile-time options, instructing the comp
insert instrumentation code at entry and exit to functions, methods, or basic blocks. This approach 
access to the source code of the programs or modules to be measured. An alternative is to
executables and object modules on disk. For example, Purify [HJ92] modifies existing binaries by in
instructions to check memory accesses. Lee and Zorn [LZ97] have implemented the By
Instrumentation Tool (BIT) for instrumenting Java byte codes with profiling tools by making chang
the existing class files on disk. Other examples include QPT [LB94] and Epoxie [Wa92].

These methods all modify existing object code. In this case, the user needs to run a tool apply
changes after every recompile. This is added work for the programmer, who must keep track of out-
classes and change specifications, and possibly maintain a separate repository of modified cla
contrast, load-time adaptation can accomplish the same goals without multiplying the number of e
versions of a class or object module. Off-line techniques do enjoy the advantage of whole-pr
visibility; although a load-time engine can cache information about all classes that have gone thro
bottleneck, it will be difficult to reason about as yet unloaded code. But conversely, off-line techn
require that the entire program be known before runtime; they do not deal well with languages (s
Java) that support dynamic linking. Load-time adaptation is not only compatible with late linking, it
be thought of as part of the very process.

A similar application of LTA is code instrumentation for debugging. Lenceviciuset al. [LHS99] have
developed a system that modifies classes by adding debugger invocations for object creations a
assignments. Classes are modified at load time with a user-defined class loader [LB98]; as di
above, this precludes instrumenting system classes, a limitation that could be avoided with library
load-time adaptation.

A related application of LTA instrumentation would be to add code that checks parameters to AP
This is similar to implementing contracts, but works exclusively in the client code. An LTA pass 
inspect incoming byte code, recognize calls to specific libraries, and add code to test the parame
desirable properties.

4.6 Dynamic Code Rewriting for Bug Workarounds

Even programs that are textually correct may produce runtime errors due to bugs in compilers o
levels of the execution environment such as system libraries or hardware. Load-time adaptati
provide a minimally intrusive workaround for such problems. For example, in 1994 Intel released a v
of the Pentium CPU with a flaw in its floating-point division implementation. The hardware div
algorithm for 64-bit numbers would return an incorrect result for certain combinations of diviso
dividend. The set of ratios that would trigger this error was quite small, as was the error itself, but re
exercise of this flaw could gradually accumulate the error. In most situations it was impossible to 
whether or at what steps the erroneous results would appear, soa priori modification of the algorithm
would not help.

One solution to such a problem is to modify existing compilers to emit code that checks for diviso
dividends that trigger the bug, and redirect execution to a slower but more accurate division algorith
13
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approach requires coordination between many independent vendors and researchers, and require
replace all affected applications with recompiled versions. A better solution would edit executab
place, looking for (and rewriting) the problematic instructions. Wolfram Research [Wo94] relea
program that acted as a wrapper, processing and patching an executable before running it.

Load-time adaptation can provide an even more convenient solution for such situations. As a class 
loaded, an LTA engine can examine each byte code, detect sequences of instructions that may trigg
in external code, and rewrite the byte code to avoid the problem. These changes would be appl
when necessary; for example, the same class file (downloaded from a file server) may be rewritten
client machine but not on another client with a later (more correct) floating point implementation.

5. Limitations of Load-Time Adaptation

The applicability of load-time adaptation may be hampered by some properties commonly fou
language systems that do not use a virtual machine. Although VM execution is not a requirement fo
LTA, most VMs have in common a design that facilitates load-time adaptation. Virtual machines typ
execute byte codes that are not specific to a real hardware platform. For example, the structure of a
file may vary widely across different hardware platforms, making a general-purpose runtime e
difficult to create. VM-based languages such as UCSD Pascal [PV84], Smalltalk [GR83] and Java 
use a byte code format that represents an instruction sequence; the byte codes define the archite
machine (usually implemented in software) on which they will run. Although it is possible to apply LT
languages without a uniform executable format, this property makes implementation much more pr
the LTA engine need not be rewritten, only recompiled.

LTA relies only on the existence of a VM-usable portable object code format, not its precise form
example, LTA could readily be applied to a language implementation like MacOberon [FK97], which
a compressed syntax tree for its executable code. By contrast, the TDF project [DRA93] also 
architecture-neutral tree-structured representation of object code, but programs are linked togethe
runtime into a native code format. In the absence of a virtual machine that uses the portable tre
code as-is, LTA cannot easily be applied.

Binary portabilityper se is not sufficient to allow for the efficient implementation of LTA. If the class fi
no longer retain any high-level information about the program they represent, an LTA engine will be 
to expend considerable effort to recover it. Such information is often present in byte code formats. I
to support type-safe dynamic linking, Java byte codes retain type information about fields and m
The tree-based binaries of MacOberon embody the control-flow topology of the original program, m
much easier the runtime application of many optimizations [KF97]. Of course, the specific s
information in the byte code will determine what kind of load-time modifications are reasonable.

In addition, the process of loading object files must be accessible to the LTA engine. For statically
native executables, regardless of platform, the loading of object modules is effectively out of reach. 
a program uses dynamically-linked libraries, if their loading is managed by an OS-specific process
be (at least) difficult to intervene. By contrast, a VM runs as a regular user process, so its file 
operations go through a well-known interface. This provides various opportunities for reliably interc
and modifying those operations.

Intervening in the process of file loading requires some path of access. An ideal way to process cl
at load time is to be given explicit but constrained access by the VM. This differs from the custom
loader approach, which allows the programmer to redefine the meaning of loading a class; by con
that LTA requires is that it be given read/write access to an array of bytes at a clearly defined stage
14
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loading. If the VM presents such an interface in the language it interprets, the LTA phase will enj
same portability as any other source code; this is also an advantage of the custom class loader app

Similarly, load-time adaptation may have difficulty changing code that is dynamically generated—t
created in binary form by a running program and then executed; in such a case there may be
handling steps at all. This situation can also be addressed if the language’s runtime system provide
for external procedures to inspect and modify the dynamically generated code before it passes 
subsequent validation and linking stages.

It is possible to use LTA to make changes to a class that invalidates it, either intrinsically or as it re
other classes. A program transformation is calledbinary compatible if it leaves unchanged the ability o
pre-existing binaries to link with it [DWE98]. We would like to characterize the binary compatib
properties of these transformations, both separately and in combination. In addition, other prope
these transformations under composition are not yet well understood. Beyond the concept of link
program designers need to concern themselves with semantic compatibility. It is possible to make 
to a class that do not cause linking errors, and that appear to conform to reasonable OO design pra
which will have unintended runtime behavior in the presence of unexpected changes to the 
descendents [MS98]. We would like to examine the semantic compatibility of the transformations
possible by LTA.

6. Related Work

Binary Component Adaptation [KH97, KH98] and the parameterized type systems of Agesen, Freun
Mitchell [AFM 97] and the Thor group [MBL97] all use direct modification of a virtual machine to ext
program semantics with load-time processing. As we noted above, this approach sacrifices the po
benefits provided by the VM environment.

The Java Object Instrumentation Environment (JOIE) [CCK98] provides a framework for constru
transformations of Java classes. Its operations include not only interface modifications, such as fi
method addition and renaming, but also direct modification of byte codes. Wallach and Felten [W
have used JOIE to modify byte codes to enhance the Java security model. JOIE has access to the 
at load time through a custom class loader [LB98]. This has the advantage that the entire project is
in Java, hence is fully portable, but the user cannot instrument system classes using JOIE.

Dalang [WS98] also uses a custom class loader to gain access to Java class files as they are bein
(The authors also note the desirability of a standard JVM hook for processing class files between p
loading and subsequent processing.) It uses the reflection features of Java to generate for each loa
a wrapper class with the same interface; the wrapper inherits from a metaobject class that 
operations to be performed before or after method invocations.

Lee and Zorn have implemented the Bytecode Instrumentation Tool (BIT) [LZ97], a collection of
classes that modify Java byte codes. This system does not address the issue of how to get access 
codes; it could be used by any of the LTA approaches discussed here. The ClassFile package [D
similar set of tools. The Darwin project [Kn98] uses this package to add prototype-style inherita
Java.

7. Conclusions

We have described the implementation and application of load-time adaptation (LTA), a flexible ap
to post-compilation processing of executable code. LTA intercepts and modifies class binaries as 
15
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being loaded at runtime and leaves the original files unchanged, allowing it to apply to classes fo
source code is not available. By performing work only when classes are loaded, LTA automatically
the efficiency benefits of a runtime system’s dynamic loading policy.

Virtual machine execution has several properties that make LTA implementation more practical: 
machines run as ordinary user processes so file system operations are more easily acces
interception; they use portable executable formats, so modification code can itself be portable; a
high-level byte codes facilitate high-level reasoning about and manipulation of program binaries. B
of these properties, LTA for virtual machine-based languages can provide uniform support for lan
extension across many different implementations.

We have compared the properties of implementing load-time adaptation by changing the virtual m
directly, by using custom class loaders defined at the source language level, and by intercepting file
calls. Using dynamically-linked libraries to intercept file system calls has the advantage that the LTA
can be made independent from specific virtual machine implementations. Library-based LTA ins
additional processing layer between a virtual machine and the operating system, forming a gate 
which all file operations must pass. All programming tools—virtual machines, compilers, analysis to
that use a standard library to call the underlying operating systems will be identically affected by li
based LTA. Such an implementation will also be easy to activate and deactivate. Library-based LTA
only a modest performance penalty: the only overhead typically comes from an additional file looku
time the running program asks for a class. This extra time represents a small fraction of the total 
time of any substantial program.

We have implemented a version of LTA for the Java Virtual Machine, and used it to explore some a
tions of LTA to extending the behavior of Java programs. We can modify classes to smooth the inte
of library classes with clients, add Eiffel-style contracts to Java classes, and add default implement
Java interfaces. In addition, LTA can perform code transformations such as instantiating parame
types, generating new classes via mixins, instrumenting code, and dynamic code rewriting, that hav
tionally been performed by other means. We believe that load-time adaptation can provide the fram
for investigating future extensions to languages running under a virtual machine, as well as m
existing code easier to run and new code easier to write.
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