

1

jContractor: A Reflective Java Library to Support Design By
Contract

Murat Karaorman Urs Hölzle John Bruno
 Department of Computer Science,

University of California,
Santa Barbara, CA 93106

{murat,urs,bruno}@cs.ucsb.edu
http://www.cs.ucsb/{~murat,~urs,~bruno}

Technical Report TRCS98-31
8 December 1998

Abstract

jContractor is a purely library and design-pattern based approach to support Design By
Contract specifications such as preconditions, postconditions, class invariants, and recovery and
exception handling in Java. jContractor uses an intuitive naming convention, and standard
Java syntax to instrument Java classes and enforce Design By Contract constructs. The designer
of a class specifies a contract by defining protected methods which conform to the
jContractor design patterns. jContractor uses Java Reflection to synthesize an
instrumented version of a Java class containing jContractor contract specifications. The
instrumented version contains code which enforces the Design By Contract specifications.
Programmers enable the run-time enforcement of contracts by either incorporating the
jContractor class loader or by instantiating objects directly from the instrumented subclass
through the jContractor factory. Programmers can use exactly the same syntax for invoking
methods and passing object references regardless of whether contracts are present or not. Since
jContractor is purely library-based, it works with any Java implementation and requires no
special tools such as modified compilers, modified JVMs, or pre-processors.

1. Introduction

One of the shortcomings of mainstream object-oriented languages such as C++ or Java is
that class or interface definitions provide only a signature-based application interface,
much like the APIs specified for libraries in procedural languages. Method signatures
provide limited information about the method: the types of the formal parameters, the
type of the returned value, and the types of exceptions that may be thrown. While type
information is useful, signatures by themselves do not capture the essential semantic
information about what the method does and promises to deliver, or what conditions must
be met in order to use the method successfully. To acquire this information, the
programmer must either analyze the source code (if available) or rely on some externally
communicated specification or documentation, none of which is automatically checked at
compile or runtime.

2

A programmer needs semantic information to correctly design or use a class. Meyer
introduced Design By Contract, as a way to specify the essential semantic information
and constraints that govern the design and correct use of a class [M92]. This information
includes assertions about the state of the object that hold before and after each method
call; these assertions are called class invariants, and apply to the public interface of the
class. The information also includes the set of constraints that must be satisfied by a
client in order to invoke a particular method. These constraints are specific to each
method, and are called preconditions of the method. Each precondition specifies
conditions on the state of the object and the argument values that must hold prior to
invoking the method. Finally, the programmer needs assertions regarding the state of the
object after the execution of a method and the relationship of this state to the state of the
object just prior to the method invocation. These assertions are called the postconditions
of a method. The assertions governing the implementation and the use of a class are
collectively called a contract. Contracts are not necessarily part of the implementation
code of a class, however, a runtime monitor could check whether contracts are being
honored.

In this paper we introduce jContractor, a pure-Java library-based system which supports
contracts in Java using a design-pattern [GHJV95] approach. jContractor supports Design
By Contract without requiring any special tools such as modified compilers, runtime
systems, modified JVMs, or pre-processors, and works with any pure Java
implementation. Therefore, a programmer can take advantage of the Design By Contract
approach by using the jContractor library and by following a simple and intuitive set of
conventions.

The jContractor library implementation addresses three key issues which arise when
adding contracts to Java: how to express preconditions, postconditions and class
invariants and incorporate them into a standard Java class definition; how to reference
entry values of attributes inside postconditions using standard Java syntax; and how to
enforce contracts and report their violations at runtime.

An overview of the jContractor approach to solving these problems is given below:
1. Programmers add contract code to a class in the form of methods “contract design

patterns.” The jContractor class loader looks for these patterns and rewrites the code
to reflect the presence of contracts.

2. The jContractor library instruments the classes that contain contract design patterns
on the fly during class loading or object instantiation. Programmers enable the run-
time enforcement of contracts either by engaging the jContractor class loader or by
explicitly instantiating objects from the jContractor object factory. Programmers can
use exactly the same syntax for invoking methods and passing object references
regardless of whether contracts are present or not.

3. jContractor uses an intuitive naming convention (contract design patterns) for adding
preconditions, postconditions, class invariants, recovery and exception handling in
the form of protected methods. This allows the contracts to be distinguished from
the functional code. The name and signature of each contract method determines the
actual method with which the contract is associated.

3

4. Postconditions and exception handlers can access the old value of any attribute by
using a static method of a jContractor class, OLD. For example OLD.value(count)
returns the value of the attribute count at method entry. The code instrumentation
arranges for attribute values accessed through the OLD interface to be recorded at
function entry.

2. jContractor Library and Contract Design Patterns

jContractor is a purely library-based approach to support Design By Contract constructs
in standard Java environments. Table 1 contains a summary of Design By Contract
constructs and their corresponding design patterns supported by jContractor. One of the
key contributions of this work is that jContractor supports all Design By Contract
principles using a pure-Java, library-only approach. Therefore, any Java developer can
immediately start using Design By Contract without making any changes to the test,
development, and deployment environment after obtaining a copy of the jContractor
classes.

Design By Contract
 Construct

 Design Pattern Description

 Precondition

(Client’s obligation)

 protected boolean
 methodName_PreCondition(
 methodSignature)

Evaluated just before methodName with
matching signature is executed. If precondition
fails the method throws PreConditionException
without executing the method body.

 Postcondition

 (Implementor’s
 promise)

protected boolean
methodName_PostCondition(
 methodSignature)

Evaluated just before methodName returns
(normal termination). If the postcondition fails,
the method throws PostConditionException instead
of returning the result.

Exception Handler

 (Implementor’s
 attempt)

protected Object
methodName_OnException(
 Exception e) throws Exception

Invoked just after methodName throws an
Exception (abnormal termination). The
exception handler provides an opportunity to do
recovery by restoring invariants, resetting state,
etc.,

 Class invariant

 (Implementor’s
 promise)

protected boolean
 className_ClassInvariant()

For each invocation of a public method, m, the
class invariant is evaluated once before m is
executed and once before m is about to return --
normal termination. If class invariant fails, a
ClassInvariantException is thrown instead of
returning the result.

 OLD
OLD.value(attr) Æ Expr evaluates to value of attr on method

entry.OLD methods can only be used inside,
postcondition and exception handler methods;
attr can be any class attribute or formal
argument.

Table 1. Summary of jContractor Design By Contract Constructs

4

A programmer writes a contract by taking a class or method name, say put , then
appending a suffix depending on the type of constraint, say _PreCondition , to write
the put_PreCondition. Then the programmer writes the method body describing
the precondition. The method can access both the arguments of the put method with the
identical signature, and the attributes of the class. When jContractor instrumentation is
engaged at runtime, the precondition gets checked each time the put method is called,
and the call throws an exception if the precondition fails.

The code fragment in Figure 1 shows a jContractor-based implementation of the put
method for the Dictionary class. Contract specifications are shown in Table 2 for
inserting an element into the dictionary, a table of bounded capacity where each element
is identified by a certain character string used as key.

class Dictionary . . {

Object put (Object x, String key)
{

putBody();
}
protected boolean put_PreCondition (Object x, String key)
{

return ((count <= capacity)
&& (! key.empty));

}
protected boolean put_PostCondition (Object x, String key)
{

return ((has (x))
 && (item (key) == x)
 && (count == OLD. value (count) + 1))

}
protected Object put_OnException (Exception e)

throws Exception
{

OLD. restore (count); //
throw e ; // rethrow exception.

}

protected boolean Dictionary_ClassInvariant () {
return (count >= 0);

}
 . . .
}

 Figure 1. Dictionary Class Implementing Contract for put Method.

5

 Obligations Benefits

Client
(Must ensure precondition)
 Make sure table is not full
 & key is a non-empty string

(May benefit from postcondition)
Get updated table where the given
element now appears, associated
with the given key.

Supplier (Must ensure postcondition)
Record given element in table,
associated with given key.

(May assume precondition)
No need to do anything if table
given is full, or key is empty string.

 Table 2. Contract Specification for Inserting Element to Dictionary

2.1 Enabling Contracts During Method Invocation

In order to enforce contract specifications at run-time, the contractor object must be
instantiated from an instrumented class. This can be accomplished in two possible ways:
(1) use the jContractor class loader which instruments all classes containing contracts
during class loading; (2) use a factory style instantiation using the jContractor library.

The simplest and preferred method is to use the jContractor class loader, since this
requires no changes to a client’s code. The following code segment shows how a client
declares, instantiates, and then uses a Dictionary object, dict . The client’s code
remains unchanged whether jContractor runtime instrumentation is used or not:

Dictionary dict ; // Dictionary (Figure-1) defines contracts.

dict = new Dictionary(); // instantiates dict from instrumented or non- instrumented
// class depending on whether jContractor classloader is engaged.

dict . put (obj1, “ name1”); // If jContractor is enabled, put-contracts are enforced, i.e.,
// contract violations result in an exception being thrown.

The second approach uses the jContractor object factory, by invoking its New method.
The factory instantiation can be used when the client’s application must use a custom (or
third party) class loader and cannot use jContractor class loader. This approach also gives
more explicit control to the client over when and which objects to instrument. Following
code segment shows the client’s code using jContractor factory to instantiate an
instrumented Dictionary object, dict :

dict = (Dictionary) jContractor . New(“ Dictionary ”);
// dict always instantiated from instrumented Dictionary

dict . put (obj1, “ name1”); // put-contracts are enforced

Syntactically, any class containing jContractor design-pattern constructs is still a pure
Java class. From a client’s perspective, both instrumented and non-instrumented
instantiations are still Dictionary objects and they can be used interchangeably, since
they both provide the same interface and functionality. The only semantic difference in

6

their behavior is that the execution of instrumented methods results in evaluating the
contract assertions, (e.g., put_PreCondition) and throwing a Java runtime exception
if the assertion fails.

Java allows method overloading. jContractor supports this feature by associating each
method variant with the pre- and postcondition functions with the matching argument
signatures.

For any class method, say foo, if the class does not define or inherit any boolean
method by the name, foo_PreCondition with the same argument signature, then
implicitly the precondition for the foo method is considered “true ”. The same
“default” rule also applies to the postconditions and class invariants.

2.2 Design Patterns for Preconditions, Postconditions and Class Invariants

The following design patterns summarize the construction of name and signatures for
contract methods:
 Precondition: protected boolean methodName + “_PreCondition” + (<arg-list>)
 Postcondition: protected boolean methodName + “_PostCondition” + (< arg-list >)
 ClassInvariant: protected boolean className + “_ClassInvariant” + ()

Each construct’s method body evaluates a boolean result and may contain references to
the object’s internal state with the same scope and access rules as the original method.
Pre- and postcondition methods can also use the original method’s formal arguments in
expressions. Additionally, postcondition expressions can refer to the old values of
object’s attributes using static accessor methods of OLD class as explained further below.

jContractor constructs the precondition expression for a method by logical-OR’ing it
with all preconditions for that method that are inherited from the parent class. This
prevents a subclass from strengthening its parent preconditions.

Similarly, postconditions (and class invariants), are evaluated as the logical-AND of the
current class’s postconditions (class invariant) with those that are inherited from the
parent classes. This prevents the weakening of parent’s postconditions or invariants by a
subclass.

2.3 Exception Contracts

The postcondition for a method describes the contractual obligations of the contractor
object only when the method terminates successfully. When a method terminates
abnormally due to some exception, it is not required for the contractor to ensure that the
postcondition holds. It is very desirable, however, for the contracting (supplier) objects to
be able to specify what conditions must still hold true in these situations, and to get a
chance to restore the state to reflect this.

7

jContractor supports the specification of general or specialized exception handling code
for methods. The instrumented method contains wrapper code to catch exceptions thrown
inside the original method body. If the contracts include an exception-handler method for
the type of exception caught by the wrapper, the exception handler code gets executed.

If exception handlers are defined for a particular method, each exception handler must
either re-throw the handled exception or compute and return a valid result. If the
exception is re-thrown no further evaluation of the postconditions or class-invariants is
carried out. If the handler is able to recover by generating a new result, the postcondition
and class-invariant checks are performed before the result is returned, as if the method
had terminated successfully.

The exception handler method’s name is obtained by appending the suffix,
“_OnException” , to the method’s name. The method takes a single argument whose
type belongs to either one of the exceptions that may be thrown by the original method,
or to a more general exception class. The body of the exception handler can include
arbitrary Java statements and refer to the object’s internal state using the same scope and
access rules as the original method itself. The jContractor approach is more flexible than
the Eiffel “rescue” mechanism because separate handlers can be written for different
types of exceptions and more information can be made available to the handler code
using the exception object which is passed to the handler method.

2.4 Supporting OLD Values and Recovery

jContractor is able to support Design By Contract style postcondition expressions in
which one can refer to the “old” state of the object just prior to the method’s invocation
using a clean and safe instrumentation “trick”. We introduce a new class, OLD, with a
static method, value , which allows us to mimic the Eiffel keyword, old. In the
postcondition of the put method, the subexpression:

 (count == OLD. value (count) + 1)

illustrates the use of the OLD class interface to access the “old” value of the object’s
“count ” attribute. Here the old value refers to the value of the variable, count , at the
point just before the put-method began to execute.

To emulate this behavior, jContractor generates code to save all attributes accessed in the
method’s postconditions or exception handlers using OLD. jContractor then replaces all
OLD.value (attr) expressions by simple variable expressions referring to the
temporary variables used to record the method entry value of the attribute.

It is also possible for an exception handler or postcondition method to revert the state of
attr to its old value by:

attr = OLD.value (attr) ;

8

This may be used as a basic recovery mechanism to restore the state of the object when
an invariant or postcondition is found to be violated or within an exception-handler.

2.5 Contract Specifications for Interfaces.

Java interface s can only be used to declare method names and signatures. Since
jContractor contracts are written as method declarations, it is impossible to include them
“inside” an interface declaration. Nevertheless, it is desirable to write contracts for an
interface. jContractor allows interface contracts to be externally provided as a separate
class, adhering to certain naming conventions and design patterns. For example, consider
the interface IX and the class C which implements this interface. The class
IX_CONTRACT, contains the pre- and postconditions for the methods in IX . jContractor
finds contract implementation classes for interfaces using the naming convention of
appending “_CONTRACT” to the interface name. Methods defined in the contract class
are used to instrument the class “implementing” the interface.

Contracts for interface classes can only include pre- and postconditions, and can only
express constraints about the method arguments, without any references to the object
state. If the implementation class also specifies a precondition for the same method, the
conditions are logical-OR’ed during instrumentation (similar to the inherited conditions.)
Similarly, postconditions are combined using logical-AND.

interface IX {
int foo (<args>);

}

class IX_CONTRACT{

protected boolean foo_PreCondition (<args>) { . . . }
protected boolean foo_PostCondition (<args>) { . . . }

}

class C . . .
implements IX ;

{
. . .
int foo (<args>) { . . . }
. . .

}

The following is a client code snippet where an IX contractor object is instantiated using
the jContractor and the implementing class, C:

IX ixObj = (IX) new C();
. . .
ixObj . foo (…); // pre & postcondition contracts

// defined by IX_CONTRACT are enforced

9

3. Design and Implementation of jContractor

The jContractor package uses the Java Reflection mechanism to detect Design By
Contract patterns during object instantiation or class loading. Classes containing contract
patterns are instrumented on the fly using the jContractor library. We begin with
explaining how instrumentation of a class is done using the two different mechanisms
explained in section 2.1. The rest of this section explains the details of the
instrumentation algorithm.

The primary instrumentation technique uses the jContractor class loader to transparently
instrument classes during class loading. The scenario depicted in Figure 2 illustrates how
the jContractor Class Loader obtains instrumented class byte-codes from the jContractor
instrumentor while loading the class, Foo. The jContractor class loader is engaged when
launching the Java application. The instrumentor is passed the name of the class by the
class loader and in return it searches the compiled class, Foo, for jContractor contract
patterns. If the class implements contract methods the instrumentor makes a copy of the
class byte-codes, modifying the public methods with wrapper code to check contract
violations, and returns the modified byte-codes to the class loader. Otherwise, it returns
the original class without any modification. The object instantiated from the instrumented
class is shown as the Foo* object in the diagram, to highlight the fact that it is
instrumented, but syntactically it is a Foo object.

If the command line argument for jContractor is not present when starting up the
application, the user’s own (or the default) class loader is used, which effectively turns
off the jContractor instrumentation. Since contract methods are separate from the public
methods, the program’s behavior remains exactly the same except for the runtime
checking of contract violations. This is the preferred technique since the client’s code is
essentially unchanged and all that the supplier has to do is to add the jContractor contract
methods to the class.

 // Client code

 Foo f;
 . . .

 f = new Foo();
 . . .
 // f is instrumented
 T res = f.m();

jContractor
ClassLoader

class Foo
{ …
 T m() { …}

 protected boolean
 m_PreCondition() {…}
…m_PostCondition() {…}

…Foo_ClassInvariant() {…}
}

class Foo
 // Instrumented version
{ …
 T m() {
 // additional checks
 // for pre, post cond’s
 // and invariants
 }
}

jContractor
Instrumentor

Foo

“Foo”

Foo*

Foo*
object

Figure 2. jContractor Class Loader based Instrumentation

Byte codes

10

The alternative technique is a factory style object instantiation using the jContractor
library’s New method. New takes a class name as argument and returns an instrumented
object conforming to the type of requested class. Using this approach the client explicitly
instructs jContractor to instrument a class and return an instrumented instance. The
factory approach does not require engaging the jContractor class loader and is safe to use
with any pure-Java class loader. The example in Figure 3 illustrates the factory style
instrumentation and instantiation using the class Foo. The client invokes
jContractor.New() with the name of the class, “Foo”. The New method uses the
jContractor Instrumentor to create a subclass of Foo, with the name, Foo_Contractor
which now contains the instrumented version of Foo. New instantiates and returns a
Foo_Contractor object to the client. When the client invokes methods of the returned
object as a Foo object, the instrumented methods in Foo_Contractor get called due to the
polymorphic assignment and the dynamic binding of methods in Java.

The remainder of this section contains details of the instrumentation algorithm for
individual jContractor constructs.

3.1 Method Instrumentation

jContractor instruments contractor objects using a simple code rewriting technique.
Figure 4 illustrates the high level view of how code segments get copied from original
class methods into the target instrumented version. Two basic transformations are applied
to the original method body. First, return statements are replaced by an assignment

 // client code
 Foo f;
 …
 f = (Foo) jContractor.

New (“Foo”);

 . . .
 // m() is instrumented
 T res = f.m();

class Foo
{ …
 T m() { …}

 protected boolean
 m_PreCondition() {…}
…m_PostCondition() {…}

…Foo_ClassInvariant() {…}
}

 class Foo_Contractor
 extends Foo
 implements Contractor
 { …
 T m() {
 // additional checks
 // for pre/ post cond’s
 // and invariants
 }
 }

 jContractor
 Instrumentor

“Foo”

Figure 3 jContractor Factory Style Instrumentation and Instantiation

Byte codes

class jContractor {
 …
Object
New (String className) {

 if (Instrument (className))
 return (Instantiate(className
 +”_Contractor”));

}
. . .
Object
Instantiate (String className) { … }
boolean
Instrument (String className) { … }
…
}

“Foo”

Foo_Contractor
 Object

11

class Foo // Instrumented version //
{
T m(<argList>) {

 return Result
}

class Foo
{ …
 protected boolean
 m_PreCondition (<argList) {

 }
 T m(<argList>) {

 }
 Object m_OnException (E e) {

 }
 protected boolean
 m_PostCondition (<argList>) {

 }

 protected boolean
 Foo_ClassInvariant () {

 }
}

 Method
 BODY

 PreCond

 PostCond

 Invariant

 Ex- Hdlr

Check ÆÆ

Check ÆÆ PreCond*

 Invariant*

TRY ÆÆ Method
BODY*

Exception ÆÆ

Check ÆÆ PostCond*

Check ÆÆ Invariant*

 Ex- Hdlr

Figure 4 jContractor Instrumentation Overview

 Initializer for OLD references

statement – storing the result in a method-scoped temporary – followed by a labeled
break , to exit out of the method body. Second, references to “old” values, using the
OLD class’ static methods are replaced by a single variable – this is explained in more
detail in a subsection. After these transformations, the entire method block is placed
inside a wrapper code as shown in the instrumented code in Figure 4.

A check wrapper checks the boolean result computed by the wrapped block and throws
an exception if the result is false . A TRY wrapper executes the wrapped code inside a
try-catch block, and associates each exception handler that the contract specifies with a
catch phrase inside an exception wrapper. Exception wrappers are simple code blocks
that are inserted inside the catch clause of a try-catch block with the matching
Exception type. Typically, exception handlers re-throw the exception, which causes the
instrumented method to terminate with the thrown exception. It is possible, however, for
the exception handler to recover from the exception condition and generate a result.

Figure 5 illustrates a concrete example referring to the Dictionary class shown in
Figure 1. This example shows the instrumented code corresponding to the put method of
the Dictionary class.

12

3.2 Instrumentation of OLD References

jContractor allocates temporaries and records the values at method entry for all attributes
accessed in the method’s postconditions or exception handlers using OLD interface. The
code rewriting logic then replaces all occurrences of “OLD.value (attr)” with a
reference to the temporary variable associated with the attribute, attr .

3.3 Performance Considerations and Implementation Status

The overhead of performing the runtime checks only affects the instrumented method

class Dictionary_Contractor extends Dictionary … {
. . .
Object put (Object x, String key)
{

Object putResult;
boolean $put_PreCondition,

 $put_PostCondition,
 $ ClassInvariant;

int $ OLD_$count = this.count;

$put_PreCondition = ((count <= capacity)
 && (! key.empty));

if (!$ put_PreCondition) {
throw new PreConditionException ();

}
$ClassInvariant = (count >= 0);
if (!$ ClassInvariant) {

 throw new ClassInvariantException ();
}

try {
putResult = putBody();

}
catch (Exception e) { // put_OnException

count = $OLD_$count ; //restore(count)
throw e ;

}

$put_PostCondition =((has(x)) &&
 (item (key) == x) &&
 (count == $OLD_$count + 1));

if (!$ put_PostCondition) {
 throw new PostConditionException ();

}
$ClassInvariant = (count >= 0);
if (!$ ClassInvariant) {

 throw new ClassInvariantException ();
}
return putResult ;

}
 } . . .

Figure 5. Factory Instrumented Dictionary Subclass.

13

calls involving objects instantiated from a class containing contracts. The cost of
evaluating the pre- and postconditions and class invariants during a method call can be
significant, since a boolean expression needs to be evaluated for each condition.
However, during instrumentation jContractor inlines the code for the contract methods
within the method body, and thus avoids the function call overhead that would otherwise
be present in a user-enforced contract implementation.

We have not completed the implementation of jContractor libraries at the time of
submitting this paper, however, we plan to make it available in the near future.

4. Discussion

4.1 Interaction with Inheritance and Polymorphism

When factory style instrumentation is used, jContractor constructs a Contractable
subclass as a direct descendant of the original base class. Therefore it is possible to pass
objects instantiated using the instrumented subclass to any client expecting an instance of
the base class. Other than enforcing the contract specifics, an instrumented subclass, say
Foo_Contractor, has the same interface as the base class, Foo, and type-wise
conforms to Foo. This design allows the contractor subclasses to be used with any
polymorphic substitution involving the base class. Consider the following class hierarchy
where the SpecialFoo class extends the base class Foo and therefore is a more
specialized version of Foo. jContractor’s factory instrumentation method can be used
with both SpecialFoo and Foo to yield the sub classes: Foo_Contractor and
SpecialFoo_Contractor into the class hierarchy as shown below:

 Foo

Foo_Contractor SpecialFoo

 SpecialFoo_Contractor

jContractor allows for the polymorphic substitution of either SpecialFoo objects or
the instrumented, SpecialFoo_Contractor objects, with Foo objects. In a
polymorphic assignment, a SpecialFoo object, sf , can be passed to a client expecting
a Foo type object. The client, in this case is expected to only know of Foo objects, and
interact with the object, sf , based on the contractual agreements with Foo Class. The
evaluation of the pre and postconditions and throwing of the related exceptions work as
expected with the Foo methods inherited by the SpecialFoo object.

The contravariance problem that arises in the inheritance of contracts when a subclass
strengthens the precondition, say by adding new constraints or weakens the postcondition

14

is avoided in jContractor by the following technique. The preconditions are always
evaluated as the logical-OR of all preconditions that are inherited from parent classes.
This prevents the subclass from strengthening parents’ precondition. Similarly,
postcondition are logical-AND’ed with those that are inherited.

4.2 Limitations

The jContractor factory subclasses the base contract class during instrumentation so
factory style instrumentation fails for classes that are final . Client application must use
the jContractor class loader to enforce contracts for final classes.

5. Related Work

The idea of associating boolean expressions (assertions) with code as a means to argue
the code’s correctness can be traced back to Hoare [H69] and others who worked in the
field of program correctness. The idea of extending an object-oriented language using
only libraries and design patterns appeared in [KB93]. The notion of compiling assertions
into runtime checks first appeared in the Eiffel language [M92b].

Eiffel is an elegant language with built-in language and runtime support for Design By
Contract. Eiffel integrates preconditions (require-clause), postconditions (ensure-clause),
class invariants, old and rescue/retry constructs into the definition of methods and
classes. jContractor is able provide all of the contract support found in Eiffel, with the
following differences: jContractor supports exception-handling with finer exception
resolution – as opposed to a singe rescue clause; JContractor does not support the retry
construct of Eiffel. We believe that if such recovery from an exception condition is
possible, it is better to incorporate this handler into the implementation of the method
itself, and not throw the exception in the first place.

Duncan & Hölzle introduced Handshake[DH98], which allows a programmer to write
external contract specifications for Java classes and interfaces without changing the
classes themselves. Handshake is implemented as a dynamically linked library and works
by intercepting the JVM’s file accesses and instrumenting the classes on the fly using a
mechanism called, binary component adaptation (BCA). BCA is developed for on the fly
modification of pre-compiled Java components (class byte-codes) using externally
provided specification code containing directives to alter the pre-compiled semantics
[KH98]. The flexibility of the approach allows Handshake to add contracts to classes
declared final ; system classes; and interfaces as well as classes. Some of the
shortcomings of the approach are that contract specifications are written externally using
special syntax; and that Handshake Library is a non-Java system that has to be ported to
and supported on different platforms.

Kramer’s iContract is a tool designed for specifying and enforcing contracts in Java
[K98]. Using iContract, pre-, postconditions and class invariants can be annotated in the
Java source code as “comments” with tags such as: @pre, @post. The iContract tool

15

acts as a pre-processor which translates these assertions and generates modified versions
of the Java source code. iContract uses its own specification language for expressing the
boolean conditions.

Mannion and Philips have proposed an extension to the Java language to support Design
By Contract [MM98], employing Eiffel-like keyword and expressions which become part
of a method’s signature. Mannion’s request that Design By Contract be directly
supported in the language standard is reportedly the most popular “non-bug” request in
the Java Developer Connection Home Page (bug number 4071460).

Porat and Fertig propose an extension to C++ class declarations to permit specification of
pre- and postconditions and invariants using an assertion-like semantics to support
Design By Contract [PF95].

6. Conclusion

We have introduced jContractor, a purely library-based solution to write Design By
Contract specifications and to enforce them at runtime using Java. The jContractor library
and design patterns can be used to specify the following Design By Contract constructs:
pre- and postconditions, class invariants, exception handlers, and old references.
Programmers can write contracts using standard Java syntax and an intuitive naming
convention. Contracts are specified in the form of protected methods in a class definition
where the method names and signatures constitute the jContractor design patterns.
jContractor checks for these patterns in class definitions and rewrites on the fly
instrumented versions of these classes that checks contracts violations at runtime.

The greatest advantage of jContractor over the other is the ease of deployment. Since
jContractor is purely library-based it does not require any special tools such as modified
compilers, runtime systems, pre-processors or JVMs, and works with any pure Java
implementation.

jContractor library instruments the classes that contain contract design patterns during
class loading or object instantiation. Programmers enable the run-time enforcement of
contracts by using a command line switch at start-up which installs the jContractor
instrumenting class loader. An alternative mechanism is to instantiate objects using the
jContractor object factory. The jContractor factory instantiates object from a new class it
creates as a subclass of the base class. The new class redefines the methods in its
interface with instrumented versions. The jContractor factory can use any class loader and
no command line switch is needed to enable it. Either way, programmers can use exactly
the same syntax for invoking methods or passing object references regardless of whether
contracts are present or not. Contract violations result in the method throwing proper
runtime exceptions.

We also describe an interesting instrumentation technique which allows accessing the old
value of variables when writing postcondition and invariant methods. For example,
OLD.value(count) returns the value of count at method entry. The instrumentation

16

arranges for values accessed through the OLD interface to be recorded at method entry
and rewrites the “OLD.value (count) ” expression as a single variable to access the
recorded value.

jContractor delivers all the benefits of Design By Contract to Java in a clean, easily
deployable and efficient way.

7. References

[DH98] Andrew Duncan and Urs Hölzle. Adding Contracts to Java with Handshake. Technical
Report TRC98-32, University of California, Santa Barbara, 1998.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns –
Elements of Reusable Software, Addison-Wesley, 1995.

[H69] C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the
ACM, 12(10), October 1969.

[KB93] Murat Karaorman and John Bruno. Introducing Concurrency to a Sequential Langauge.
 Communications of the ACM. Vol.36, No.9, September 1993, pp.103-116.

 [K98] Reto Kramer. iContract – The Java Design by Contract Tool. Proc. of TOOLS ’98, Santa
 Barbara, CA August 1998. Copyright IEEE 1998.

 [KH98] Ralph Keller and Urs Hölzle. Binary Component Adaptation. Proc. of
ECOOP ’98, Lecture Notes in Computer Science, Springer Verlag, July 1998.

[M92] Bertrand Meyer. Applying Design by Contract. In Computer (IEEE), vol. 25, no. 10,
 October 1992, pages 40-51.

[M92b] Bertrand Meyer: Eiffel: The Language, Prentice Hall, 1992.

 [MM98] Mike Mannion and Roy Phillips. Prevention is Better than a Cure. Java Report,
 Sept.1998.

[PF95] S.Porat and P.Fertig. Class Assertions in C++. Journal of Object Oriented Programming,
 8(2):30-37, May 1995.

